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Abstract7

Orientation �eld is a global feature of �ngerprints that is very important in automatic �ngerprint identi�cation systems
(AFIS). Establishing an accurate and concise model for orientation �elds will not only improve the performance of orientation9
estimation, but also make it feasible to apply orientation information in the matching process. In this paper, a novel model for
the orientation �eld of �ngerprints is proposed. We use a polynomial model to approximate the orientation �eld globally and11
a point-charge model at each singular point to improve the approximation locally. These two models are combined together
by a weight function. Experimental results are provided to illustrate the fact that this combination model is more accurate and13
robust with respect to noise compared with the previous works. The application of the model is discussed at the end.
? 2003 Published by Elsevier Ltd on behalf of Pattern Recognition Society.15
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1. Introduction

Among various biometric techniques, automatic �nger-
print identi�cation systems (AFIS) are the most popular19
and reliable for automatic personal identi�cation. During the
last years, �ngerprint identi�cation has received increasing21
attention and the performance of �ngerprint identi�cation
systems has reached a high level. However, it is still not23
satisfactory for a large database or �ngerprints with poor
quality [1,2].25

A �ngerprint is the pattern of ridges and valleys on the
surface of a �ngertip. In Fig. 1(a), a �ngerprint is depicted.27
In this �gure, the ridges are black and the valleys are white.
Its orientation %eld, de�ned as the local orientation of the29
ridge-valley structures, is shown in Fig. 1(b). The minutiae,
ridge endings and bifurcations, and the singular points, are31
also shown in Fig. 1(a). Singular points can be viewed as
points where the orientation �eld is discontinuous. They33
can be classi�ed into two types: A core is the point of the35
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innermost curving ridges and a delta is the center of trian-
gular regions where three diEerent directional Fows meet. 37
Most classical AFIS algorithms [1–5] take the minutiae and
the singular points, including their coordinates and direc- 39
tion, as the distinctive features to represent the �ngerprint in
the matching process. But this kind of representation does 41
not utilize all available features in �ngerprints and therefore
cannot provide enough information for large-scale �nger- 43
print identi�cation tasks [6].

As a global feature, orientation �eld describes one of 45
the basic structures of a �ngerprint. The variation of ori-
entation �eld is of low frequency so that it is robust with 47
respect to various noises. It has been widely used for minu-
tiae extraction and �ngerprint classi�cation, but rarely uti- 49
lized into the matching process. In this paper, we focus on
the modeling of orientation �eld. Our purpose is to represent 51
the orientation �eld in a complete and concise form so that
it can be accurately reconstructed with several coeHcients. 53
This work is signi�cant in three ways: (a) It can be used
to improve the estimation of orientation �eld, especially for 55
poor-quality �ngerprints, therefore it will be of bene�t in
the extraction of minutiae for conventional �ngerprint iden- 57
ti�cation algorithms. (b) More importantly, the coeHcients
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Fig. 1. Example of a �ngerprint: (a) singular points and minutiae with its direction; (b) orientation �eld shown with unit vector.

of the orientation �eld model can be saved for use in the1
matching step. As a result, information on orientation �eld
can be utilized for �ngerprint identi�cation. By combining it3
with the minutiae information, a much better identi�cation
performance can be expected. (c) In Ref. [7], the authors5
proposed to synthesize the �ngerprint by using information
on orientation �eld, minutiae and the density between the7
ridges. This makes it possible to establish a complete rep-
resentation for the �ngerprint by combining the orientation9
model with some other information.

Sherlock and Monro [8] proposed a so-called zero-pole11
model for orientation �eld based on singular points, which
takes the core as zero and the delta as a pole in the complex13
plane. The inFuence of a core, zc, is 1

2 arg(z − zc) for point
z, and that of a delta, zd, is − 1

2 arg(z − zd). The orientation15
at z, is the sum of the inFuence of all cores and deltas. It
is simple and eEective, but inaccurate because many �nger-17
prints that have the same singular points may yet diEer in
detail. Vizcaya and Gerhardt [9] have made an improvement19
using a piecewise linear approximation model around sin-
gular points to adjust the zero and pole’s behavior. First, the21
neighborhood of each singular point is uniformly divided
into eight regions and the inFuence of the singular point is23
assumed to change linearly in each region. An optimization
implemented by gradient-descent is then performed to get25
a piecewise linear function. These two models cannot deal
with �ngerprint without singular point such as the plain arch27
classi�ed by Henry [10]. Furthermore, since they do not con-
sider the distance from singular points and the inFuence of29
a singular point is the same as any point on the same cen-
tral line, whether near or far from the singular point, serious31

error will be caused in the modeling of the regions far from
singular points. As a result, these two models cannot be used 33
for accurate approximation to real �ngerprint’s orientation
�eld. 35

Here we propose a combination model for the orientation
�eld. Since the orientation of �ngerprints is quite smooth and 37
continuous except at singular points, we apply a polynomial
model to approximate the global orientation �eld. At each 39
singular point, a point-charge model similar to the zero-pole
model is used to describe the local region. Then, these two 41
models are combined smoothly together through a weight
function. The advantages of our combination model are as 43
below: (1) It can accurately represent the orientation �eld
at regions either near or far from singular points. (2) Global 45
approximation makes it robust against noise. (3) It has a
concise representation, which guarantees a low storage cost 47
for its application to �ngerprint identi�cation.

The paper is organized as follows. In Section 2, the com- 49
bination model of the orientation �eld is proposed. The al-
gorithm for computing the model’s coeHcients is given in 51
Section 3. Experimental results are presented in Section 4.
We �nish with conclusions and discussion on applications 53
of our model.

2. The combination model of orientation �eld 55

From Fig. 1(b), we can see that the orientation pattern
of a �ngerprint is quite smooth and continuous except near 57
the singular points. That means we can apply a simple and
smooth function to approximate it globally. 59
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Since the value of a �ngerprints’ orientation is de�ned1
within [0; �), it seems that this representation has an intrin-
sic discontinuity (in fact, the orientation, 0, is the same as3
the orientation, �, in ridge pattern). So we cannot model the
orientation �eld directly. A solution to this problem is to5
map the orientation �eld to a continuous complex function.
De�ne �(x; y) and U (x; y) to be, respectively, the orienta-7
tion �eld and the transformed function, respectively. The
mapping can be de�ned as9

U = R+ iI = cos 2� + i sin 2�; �∈ [0; �); (1)

where R and I denote, respectively, the real part and imag-
inary part of the complex function, U (x; y). Obviously,11
R(x; y) and I(x; y) are continuous with x; y in those re-
gions. The above mapping is a one-to-one transformation13
and �(x; y) can be easily reconstructed from the values of
R(x; y) and I(x; y).15

Now, the modeling of the orientation �eld can be done in
two ways. One is to model the complex function, U (x; y),17
in the complex domain directly; the other is to model its
real part, R(x; y), and imaginary part, I(x; y), respectively,19
in the real domain. We employ the second method in this
paper; the former method will be addressed in our future21
research.

To globally represent R(x; y) and I(x; y), two bivariate23
polynomial models are established, which are denoted by
PR and PI , respectively. These two polynomials can be for-25
mulated as

PR(x; y) = ( 1 x · · · xn ) · P1 ·




1

y

...

yn




(2)

and27

PI(x; y) = ( 1 x · · · xn ) · P2 ·




1

y

...

yn



; (3)

where n is the polynomials’ order and the matrices,
Pi ∈Rn×n; ∀i = 1; 2.29

Near the singular points, the orientation is no longer
smooth, so it is diHcult to model with a polynomial func-31
tion. A model named ‘point-charge’ (PC) is added at each
singular point. And for a certain singular point, its inFuence33
at the point, (x; y), varies with the distance between the
point and the singular point. Fig. 2(a) shows the unit inFu-35
ence vector (tangent vector) caused by a standard core. Its
electric Fux lines are clockwise along the concentric circle.37
The inFuence of a standard (vertical) core at the point,39

(x; y), is de�ned as

PCCore = H1 + iH2 =



y − y0

r
Q + i

x − x0

r
Q; r6R;

0; r ¿R;
(4)

where (x0; y0) is this core’s position and r = 41√
(x − x0)2 + (y − y0)2. Because the inFuence of a core

is just like positive electricity, we call Q as the electrical 43
quantity. R is de�ned as the eEective radius. The inFuence
of a standard delta is 45

PCDelta = H1 + iH2 =



y − y0

r
Q − i

x − x0

r
Q; r6R;

0; r ¿R:
(5)

Compared with the model provided in Ref. [8], our
point-charge model uses diEerent quantities of electricity to 47
describe the neighborhood of each singular point instead of
the same inFuence at all singular points. 49

In a real �ngerprint, the ridge pattern at the singular points
may have a rotation angle compared with the standard one. If 51
the rotation angle from standard position is �(�∈ [− �; �),
see Fig. 2(b)), a transformation can be made as 53(
x′

y′

)
=

(
x0

y0

)
+

(
cos� sin�

−sin� cos�

)(
x − x0

y − y0

)
: (6)

Then, the point-charge model can be modi�ed by taking x′

and y′ instead of x and y, for cores in Eq. (4) and deltas in 55
Eq. (5), respectively.

To combine the polynomial model (PR; PI) with 57
point-charge smoothly, a weight function can be used. For
point-charge, the weighting factor at the point, (x,y), is 59
de�ned as

�(k)
PC(x; y) = 1 − r(k)(x; y)

R(k)
; (7)

where (x(k)
0 ; y(k)

0 ) is the coordinate of the kth singular point, 61
R(k) is the eEective radius (as de�ned in Eqs. (4)–(5)), and

r(k)(x; y) is set as min(
√

(x − x(k)
0 )2 + (y − y(k)

0 )2; R(k)). 63
For the polynomial model, the weighting factor at the point,
(x; y), is 65

�PM (x; y) = max

{
1 −

K∑
k=1

�(k)
PC ; 0

}
; (8)

where K is the number of singular points. The weight func-
tion guarantees that for each point, its orientation follows 67
the polynomial model if it is far from the singular points
and follows the point-charge if it is near one of the singular 69
points.
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Fig. 2. Point-charge model: (a) inFuence vector around a standard core; (b) real ridge pattern near a core with a rotation angle, �.

Then, the combination model for the whole �ngerprint’s1
orientation �eld can be formulated as(
R(x; y)

I(x; y)

)
= �PM ·

(
PR

PI

)
+

K∑
k=1

�(k)
PC ·

(
H (k)

1

H (k)
2

)
; (9)

where PR and PI are, respectively, the real and imaginary3
part of the polynomial model, and H (k)

1 and H (k)
2 are, respec-

tively, the real and imaginary part of point-charge model for5
the kth singular point. Obviously, the combination model
is continuous with x and y. The coeHcient matrices of the7
two polynomials, PR and PI , and the electrical qualities,
{Q1; Q2; : : : ; QK}, of the singular points will de�ne the com-9
bination model.

3. Implement scheme

3.1. Coarse orientation %eld computation

There are essentially two ways to compute the ori-13
entation �eld: �lter-bank based approaches [11–13] and
gradient-based approaches [4,14–16]. The �lter-bank15
based approaches are more resistant to noise than the
gradient-based, but they are discrete-valued (depending on17
the number of �lters) and too computationally expensive.
So we adopt a gradient-based approach in our work. The19
coarse orientation �eld, O, and its reliability, W , can be
obtained, respectively, by21

O(x; y) =
1
2

tan−1
∑

" 2GxGy∑
"(G2

x − G2
y)

+
�
2

(10)

and

W (x; y) =
(
∑

" (G2
x − G2

y))2 + 4(
∑

" GxGy)2

(
∑

"(G2
x + G2

y))2
; (11)

where " is a small neighboring region of the point, (x; y),23
(Gx; Gy) is the gradient vector at (x; y), and the output of
tan−1(·) is within [ − �; �].25

We also need to identify the position and type of singular
points. Many approaches have been proposed for singular27

point extraction. Most of them are based on the Poincare 29
index [3,4,16,11]. In this paper, we adopt the algorithm pro-
posed in Ref. [11]. 31

3.2. Polynomial approximation

The above two bivariate polynomials can be computed 33
by using the Weighted Least Square (WLS) algorithm [17].
The coeHcients of the polynomial are obtained by minimiz- 35
ing the weighted square error between the polynomial and
the values of R(x; y) and I(x; y) computed from the real �n- 37
gerprint. As pointed above, the reliability, W (x; y), can in-
dicate how well the orientation �ts the real ridge. The higher 39
the reliabilityW (x; y) is, the more inFuence the point should
have. Then W (x; y) can be used as the weighting factor at 41
the point (x; y). As a result, it can eHciently decrease the
inFuence of inaccurate orientation estimation. 43

As we know, a higher-order polynomial can provide
a better approximation, but at the same time it will re- 45
sult in a much higher cost of storage and computation.
Moreover, a high-order polynomial will be ill behaved on 47
numerical approximation. As to a lower-order polynomial,
however, it will yield lower approximation accuracy in 49
those regions with high curvature. In our experiments, we
have tried 3-order, 4-order and 5-order polynomials, re- 51
spectively, and their performances are listed in Table 1.
As a tradeoE, we choose 4-order (n = 4) polynomials for 53
the global approximation. The experimental results showed
that they performed well enough for most real �ngerprints, 55
while preserving a small cost for storage and computation.

3.3. Computation of point-charge model 57

The coeHcients of the point-charge model at singular
points can be obtained in two steps. First, two parameters are 59
estimated for each singular point: the rotation angle, �, and
the eEective radius, R. Second, charges of singular points 61
are estimated by optimization.

Since the average orientation near the singular point can 63
be inferred from the result of polynomial approximation,
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Table 1
The average approximation errors (i.e. the mean error and stan-
dard deviation) of the zero-pole model, the piecewise linear model
and our combination model with diEerent polynomial order. As a
tradeoE, we choose n= 4 for the combination model in our study

Zero-pole Piecewise Combination
linear model

n = 3 n = 4 n = 5

Mean 14.32 10.64 8.43 5.58 5.17
Standard deviation 5.47 4.15 3.84 2.42 2.35

the rotation angle, �, which can be regarded as the cross1
angle between the vertical line and the average orientation
of the ridge pattern around the singular point, can be easily3
computed. For cores, we can further tell whether it is upward
or downward by matching the core with an upward core5
and a downward core template, which are generated from
the standard point-charge model. For the convenience of7
computation, we use a same R for each singular point, which
can be determined empirically.9

After that, we need to estimate the electrical quantity for
each singular point. Since our purpose is to minimize the11
approximation error, the objective function for the singular
points can be represented as13

min J =
∑
%

([R(x; y) − cos(2O)]2

+[I(x; y) − sin(2O)]2); (12)

where O is the original orientation �eld and % is the eEec-
tive region for the point-charge model. For each singular15
point, its eEective region is a small circle with radius R.
% is the union of all these small circles. The variables in17
the above optimization problem are the charges of singular
points, {Q1; Q2; : : : ; QK}. They can be computed by solving19
the following equations as

@J=@Qk = 0; k = 1; 2; : : : ; K: (13)

In Fig. 3, the results of each step in our implement scheme21
are listed.

4. Experimental results

Experiments are carried on two sets of �ngerprints. The
�rst set (Set 1) is a sample database from NIST Special25
Database 14 [18] that contains 40 �ngerprint images. The
images’ size is 480 × 512. The second set (Set 2) contains27
60 �ngerprint images captured with a live-scanner, whose
size is 512 × 320. The �ngerprints in these two sets vary in29
quality and type.

Three orientation models are evaluated on the database:31
the zero-pole model [8], the piecewise linear model [9] and
our combination model. All of them use the same algorithm33

for singular point extraction and orientation estimation. In
global approximation, 4-order bivariate polynomials are em- 35
ployed. As pointed in Ref. [16], there is no ground truth for
the orientation �eld of �ngerprints and objective error mea- 37
surement cannot be constructed. Therefore, it is diHcult to
evaluate the quality of estimated orientation �eld quantita- 39
tively. Vizcaya and Gerhardt [9] evaluated the approxima-
tion error with the original orientation matrix, which is not 41
suitable because the original orientation matrix is often too
noisy to meet the real pattern’s orientation (see Figs. 5(b) 43
and 6(b) for example). We deal with this problem by two
means. First, as mentioned above, the orientation �eld ex- 45
tracted by a Gabor �lter-bank (when the number of �lters is
large enough) is more reliable than the original one based 47
on gradient computing, we can compute the error of the con-
structed orientation �eld by comparing it with the orienta- 49
tion �eld extracted by using Gabor �lter-bank (but it should
also be noted that orientation computation based on Gabor 51
�lter is too computationally expensive and not suitable for
real applications, as mentioned in Section 3.1). Secondly, 53
the quality of the estimation is assessed by means of manual
inspection. 55

In the �rst one, the approximation error of a �ngerprint
is de�ned as the mean absolute error (MAE) on all points 57
between the orientation �eld reconstructed by the model and
the orientation �eld extracted by the Gabor �lter-bank [11] 59
(64-�lters), i.e.,

MAE =
1
N

∑
(x;y)∈%

d(ORecon(x; y) − OGabor(x; y)); (14)

where % is the region of comparison, which contains totally 61
N points, (x; y) is the coordinate of a point in %, ORecon
and OGabor denote the reconstructed orientation map and the 63
orientation �eld computed by Gabor �lter bank, respectively.
Since the orientation is in (0; �], the function d(·) is de�ned 65
as

d(�) =




|�|; |�|¡ �
2
;

�− |�|; otherwise:
(15)

Then, by averaging the total approximation error on all the 67
�ngerprints in the database, the error of each model can be
obtained along with its standard deviation. The results are 69
summarized in Table 1. The mean error of the approxima-
tion is 14.32, 10.64, and 5.58, by using the zero-pole model, 71
the piecewise linear model and our combination model, re-
spectively. The standard deviation is 5.47, 4.75, and 2.42, 73
by using these three models, respectively. The results show
that our combination model leads to 47.6% reduction in the 75
mean error and 49.1% reduction in the standard deviation
compared with the other two models. 77

From observation, it can also be concluded that the per-
formance of our combination model is very satisfactory, 79
and much better than the other two models and the Gabor
�lter-bank based estimation. Some of the results of our com- 81
bination model are presented in Fig. 4. Among them there
are various �ngerprint types: loop, whorl, twin loop, and 83
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Fig. 3. The results of each step in our implement scheme of the modeling: (a) original �ngerprint with singular points marked; (b) the
coarse orientation matrix O; (c) the reconstructed orientation matrix by the combination model; (d) the reliability W ; (e) cos(2O) and (f)
sin(2O) are the transformed images of the coarse orientation matrix O; (g, h) transformed images of the reconstructed orientation matrix.

plain arch without singular points. It should be noted that the1
other two models couldn’t deal with plain arch �ngerprints.
The reconstructed orientation �elds are shown as unit vectors3
upon the original �ngerprint. We can see that the result is
rather accurate and robust to noise.5

Figs. 5 and 6 give two examples for comparison. (a)
is the input �ngerprint; (b) is the original orientation �eld7
for approximation obtained by gradient-based method [14];
(c) is the orientation �eld by Gabor �lter-bank (64 �lters)9
method [16]; while (d–f) are the orientation �elds recon-
structed, respectively, by the zero-pole model, the piecewise11
linear model and our own combination model. From the re-
sults, we can see that: (1) For poor-quality �ngerprints, the13
gradient-based method (see Figs. 5(b) and 6(b)) can only
extract the orientation �eld coarsely with much noise. The15
Gabor �lter-bank based method (see Figs. 5(c) and 6(c)) is

better, however, it is still heavily inFuenced by noise such 17
as creases and scars. The combination model, though based
on the coarse orientation �eld, can reconstruct the orienta- 19
tion �eld smoothly and accurately against the noise. Thus it
can be used to improve the orientation �eld estimation. (2) 21
Among these three models, the zero-pole model can only
roughly describe the orientation (see Figs. 5(d) and 6(d)). 23
The piecewise linear model does better near the singular
points, but it fails in places far from them, as can easily be 25
observed at the right bottom part in Fig. 5(e) and the top part
and bottom part in Fig. 6(e). By contrast, the combination 27
model can describe the orientation of the whole �ngerprint
image smoothly and precisely, whether the region is near or 29
far from the singular points.

In our experiments, the combination model has a sat- 31
isfying performance for most �ngerprint images. But the
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Fig. 4. Examples of reconstructed orientation �eld by the combination model: (a–d) from Set 1; (e–g) from Set 2. Various types of �ngerprint
are among them. (e) is a plain arch without singular point modeled only with polynomial model. In contrast, zero-pole and piecewise linear
model cannot deal with the plain arch as (e).

model’s parameters are computed by an approximation1
procedure, so they are heavily inFuenced by the results
of original orientation �eld estimation and singular points3
extraction. For a few poor-quality �ngerprints, if the orig-
inal orientation �eld is too unreliable, or if one cannot5

extract the singular points correctly at all, the approxi-
mation performance of the combination model will be 7
bad. In Fig. 7, an example is given, in which (a) is the
input �ngerprint; (b) is the original orientation �eld for 9
approximation obtained by gradient-based method; and
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Fig. 5. Comparative result I: (a) original �ngerprint; (b) estimated by gradient-based method [14]; (c) estimated by Gabor �lter-bank (64
�lters) method [16]; (d) reconstructed by zero-pole model; (e) reconstructed by piecewise linear model; (f) reconstructed by the combination
model.

(c) is the orientation �elds reconstructed by our combi-1
nation model. Since (a) is too noisy in the right-bottom
part, there is no reliable orientation information in (b).3

Consequently, the orientation �eld reconstructed by our
combination model will fail in the right-bottom part, as 5
in (c).
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Fig. 6. Comparative result II: (a) original �ngerprint; (b) estimated by gradient-based method [14]; (c) estimated by Gabor �lter-bank (64
�lters) method [16]; (d) reconstructed by zero-pole model; (e) reconstructed by piecewise linear model; (f) reconstructed by the combination
model.

Most �ngerprints have up to 4 singular points (2 cores and1
2 deltas). Assuming that an n-order polynomial is applied
for a �ngerprint with 4 singular points, the total number of3
coeHcients is 2(n+1)2 +4(2 coeHcient matrices for PR and
PI , and 4 charges for modeling singular points). Since n is5
chosen as 4 in our study, that means that only 54 coeHcients
need to be saved for further usage. As to the computation7
cost, about 1 s is required to compute all the coeHcients
when the entire process is implemented with Matlab 6.1 and9
C on a Pentium III 500 Hz PC.

5. Discussions and conclusions

In this paper, a combination model for the orientation
�eld of �ngerprints is proposed, which can approximate the13

orientation �eld accurately and reliably. The experimental
results show that our model leads to nearly 50% reduction 15
in the mean error and standard deviation compared with
the previous works. Moreover, it can deal with �ngerprints 17
without singular points and be implemented eHciently for
on-line processing. 19

Our future work will go in two directions. First, our com-
bination model deals with the smoothly continuous ridge 21
pattern and singular points separately, and then combines
them together. As we mentioned above, directly modeling 23
U in complex domain is an alternative method. A rational
function in complex domain may be employed for U , which 25
will be more universal and concise.

Another direction for further work is the application of 27
this model. First, as indicated above, minutiae points, orien-
tation map and ridge density map can completely describe 29
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Fig. 7. A failure example of the combination model: (a) input �ngerprint; (b) original orientation �eld for approximation obtained by
gradient-based method; (c) orientation �elds reconstructed by the combination model. In (a), the original image is too noisy in the right-bottom
part and there is no reliable orientation information in that part of (b). Consequently, the orientation �eld reconstructed by our combination
model will fail in that region.

a �ngerprint image. We can use the orientation model with1
other information to compress, restore or synthesize the �n-
gerprint images. Then the noise on the �ngerprint images3
can be completely removed. Secondly, since the coeHcients
of orientation model can be saved and used for �ngerprint5
matching, we can develop some new methods for �ngerprint
identi�cation based on the orientation information and some7
other information. As a result, the recognition rate can be
improved.9

6. Summary

Among various biometric techniques, automatic �nger-11
print identi�cation is most popular and reliable for automatic
personal identi�cation. Conventional �ngerprint identi�ca-13
tion algorithms take the minutiae and the singular points as
the distinctive features to represent the �ngerprint. But this15
kind of representation cannot provide enough information
for large-scale �ngerprint identi�cation tasks.17

As a global feature, orientation �eld describes one of the
basic structures of a �ngerprint. It has been widely used for19
minutiae extraction and �ngerprint classi�cation, but rarely
utilized into the matching process. Our purpose is to rep-21
resent the orientation �eld in a complete and concise form.
Its signi�cance lies in: (a) It can be used to improve the es-23
timation of orientation �eld, therefore it will bene�t in the
extraction of minutiae for conventional �ngerprint identi�-25
cation algorithms. (b) More importantly, the coeHcients of
the orientation �eld model can be saved for the use in the27
matching stage. As a result, much more information can be
utilized for �ngerprint identi�cation. (c) This makes it pos-29

sible to establish a complete representation for the �nger-
print by combining the orientation model with some other 31
information.

A so-called zero-pole model was proposed for orientation 33
�eld based on singular points, which takes the core as zero
and the delta as a pole in the complex plane. An improve- 35
ment was made by using a piecewise linear approximation
model around singular points to adjust the zero and pole’s 37
behavior. Unfortunately, these two models cannot deal with
�ngerprint without singular point such as the plain arch. 39
Furthermore, since they consider that the inFuence of a sin-
gular point is the same as any point on the same central line 41
whether near or far from the singular point, serious error will
be caused in the modeling of the regions far from singular 43
points. As a result, these two models cannot be used for ac-
curate approximation to real �ngerprint’s orientation �eld. 45

In this paper, we propose a combination model for the
orientation �eld. Since the orientation of �ngerprints is quite 47
smooth and continuous except at singular points, we apply
a polynomial model to approximate the global orientation 49
�eld globally. At each singular point, a point-charge model
is used to describe the local region. Then, these two models 51
are combined smoothly together through a weight function.
Experimental results are provided to illustrate the fact that 53
this combination model is more accurate and robust with
respect to noise compared with the previous works. The ad- 55
vantages of our combination model are as below: (1) It can
accurately represent the orientation �eld at regions either 57
near or far from singular points. (2) Global approximation
makes it robust against noise. (3) It has a concise representa- 59
tion, which guarantees a low storage cost for its application
to �ngerprint identi�cation. 61



UNCORRECTED P
ROOF

PR1890
ARTICLE IN PRESS

J. Gu et al. / Pattern Recognition ( ) – 11

Acknowledgements

The authors wish to acknowledge support from Natural
Science Foundation of China under grant 60205002.

References

[1] A.K. Jain, R. Bolle, S. Pankanti (Eds.), BIOMETRICS:3
Personal Identi�cation in Networked Society, Kluwer
Academic Publisher, New York, 1999.5

[2] D. Zhang, Automated Biometrics: Technologies and Systems,
Kluwer Academic Publisher, USA, 2000.7

[3] K. Hrechak, J.A. McHugh, Automated �ngerprint recognition
using structural matching, Pattern Recognition 23 (1990) 8939
–904.

[4] A. Jain, L. Hong, On-line �ngerprint veri�cation, IEEE Trans.11
Pattern Anal. Mach. Intell. 19 (4) (1997) 302–314.

[5] R.S. Germain, A. Califano, S. Colville, Fingerprint matching13
using transformation parameter clustering, IEEE Comput. Sci.
Eng. 4 (4) (1997) 42–49.15

[6] S. Pankantic, S. Prabhakarb, A.K. Jain, On the individuality
of �ngerprints, IEEE Trans. Pattern Anal. Mach. Intell. 24 (8)17
(2002) 1010–1025.

[7] R. Cappelli, A. Erol, D. Maio, D. Maltoni,19
Synthetic �ngerprint-image generation, in: Proceedings 15th
International Conference on Pattern Recognition (ICPR2000),21
Vol. 3, September 2000, pp. 475–478.

[8] B. Sherlock, D. Monro, A model for interpreting �ngerprint 23
topology, Pattern Recognition 26 (7) (1993) 1047–1055.

[9] P. Vizcaya, L. Gerhardt, A nonlinear orientation model for 25
global description of �ngerprints, Pattern Recognition 29 (7)
(1996) 1221–1231. 27

[10] E.R. Henry, Classi�cation and Uses of Finger Prints,
Routledge, London, 1900. 29

[11] A. Jain, S. Prabhakar, L. Hong, A multichannel approach to
�ngerprint classi�cation, IEEE Trans. Pattern Anal. Mach. 31
Intell. 21 (4) (1999) 348–359.

[12] K. Karu, A.K. Jain, Fingerprint classi�cation, Pattern 33
Recognition 17 (3) (1996) 389–404.

[13] A.K. Jain, S. Prabhakar, L. Hong, et al., Filterbank-based 35
�ngerprint matching, IEEE Trans. Image Process. 9 (5) (2000)
846–859. 37

[14] M. Kass, A. Witkin, Analyzing orientated pattern, Computer
Vision, Graphics Image Process. 37 (1987) 362–397. 39

[15] J. Zhou, X. Lu, D. Zhang, C.Y. Wu, Orientation analysis
for rotated human face detection, Image Vision Comput. 20 41
(2002) 257–264.

[16] A.M. Bazen, S.H. Gerez, Systematic methods for the 43
computation of the directional �elds and singular points of
�ngerprints, IEEE Trans. Pattern Anal. Mach. Intell. 24 (7) 45
(2002) 905–919.

[17] P. Whittle, Prediction and Regulation by Linear Least-Square 47
Methods, The English Universities Press Ltd., London, 1963.

[18] NIST Special Database 14: NIST Mated Fingerprint Card Pairs 49
(MFCP2), available at http://www.nist.gov/srd/nistsd14.htm.

About the Author—JINWEI GU was born in August 1980. He received B.S. degree from Department of Automation, Tsinghua University,
Beijing, China, in 2002. Now he is a master student in Department of Automation, Tsinghua University. His research interests are in pattern
recognition and intelligent information processing.

51
About the Author—DR. JIE ZHOU was born in November 1968. He received B.S. degree and M.S. degree both from Department
of Mathematics, Nankai University, Tianjin, China, in 1990 and 1992, respectively. He received Ph.D. degree from Institute of Pattern
Recognition and Arti�cial Intelligence, Huazhong University of Science & Technology (HUST), Wuhan, China, in 1995. From then to
1997, he served as a postdoctoral fellow in Department of Automation, Tsinghua University, Beijing, China. Now he is Associate Professor
in Department of Automation, Tsinghua University.
His research area includes Pattern Recognition, Information Fusion, Image Processing and Computer Vision. He has directed or participated
more than 10 important projects. In recent years, he has published more than 10 papers in international journals and more than 30 papers
in international conferences. He received Best Doctoral Thesis Award from HUST in 1995. Dr. Zhou is a member of IEEE and a fellow of
Chinese Association of Arti�cial Intelligence (CAAI).

About the Author—DAVID ZHANG graduated in computer science from Peking University in 1974 and received the M.Sc. and Ph.D.
degrees in computer science and engineering from Harbin Institute of Technology in 1983 and 1985, respectively. From 1986 to 1988, he
was a postdoctoral fellow at Tsinghua University and became an associate professor at Academia Sinica, Beijing, China. He received his
second Ph.D. in electrical and computer engineering at University of Waterloo, Ontario, Canada, in 1994. Currently, he is a professor in
Hong Kong Polytechnic University, Hong Kong. He is Founder and Director of Biometrics Technology Centre supported by UGC/CRC,
Hong Kong Government. He also is Founder and Editor-in-Chief, International Journal of Image and Graphics, and an associate editor,
Pattern Recognition, and other �ve international journals. His research interests include automated biometrics-based identi�cation, neural
systems and applications, and parallel computing for image processing & pattern recognition. So far, he has published over 170 papers
including seven books around his research areas. Prof. Zhang is a senior member of IEEE. 53

http://www.nist.gov/srd/nistsd14.htm

	A combination model for orientation field of fingerprints
	Introduction
	The combination model of orientation field
	Implement scheme
	Coarse orientation field computation
	Polynomial approximation
	Computation of point-charge model

	Experimental results
	Discussions and conclusions
	Summary
	Acknowledgements
	References


